A Swarm Negative Selection Algorithm for Email Spam Detection

نویسندگان

  • Ismaila Idris
  • Ali Selamat
چکیده

The increased nature of email spam with the use of urge mailing tools prompt the need for detector generation to counter the menace of unsolocited email. Detector generation inspired by the human immune system implements particle swarm optimization (PSO) to generate detector in negative selection algorithm (NSA). Outlier detectors are unique features generated by local outlier factor (LOF). The local outlier factor is implemented as fitness function to determine the local best (Pbest) of each candidate detector. Velocity and position of particle swarm optimization is employed to support the movement and new particle position of each outlier detector. The particle swarm optimization (PSO) is implemented to improve detector generation in negative selection algorithm rather than the random generation of detectors. The model is called swarm negative selection algorithm (SNSA). The experimental result show that the proposed SNSA model performs better than the standard NSA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

A Probabilistic Neural Network Based Classification of Spam Mails Using Particle Swarm Optimization Feature Selection

Email has gained the explosive growth in the communication of people across the world. This worldwide communication also has some disadvantages like Spam mails. The spammers spread the useless, unwanted mails and even malicious contents to the usersemails. This increasing number of spam mails increases the need for the spam detection architecture with the machine learning classification. The pr...

متن کامل

A New Model for Email Spam Detection using Hybrid of Magnetic Optimization Algorithm with Harmony Search Algorithm

Unfortunately, among internet services, users are faced with several unwanted messages that are not even related to their interests and scope, and they contain advertising or even malicious content. Spam email contains a huge collection of infected and malicious advertising emails that harms data destroying and stealing personal information for malicious purposes. In most cases, spam emails con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015